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STRESS-STRAIN STATE OF AN ANISOTROPIC PLATE
WITH AN ELLIPTIC HOLE AND THIN RIGID INCLUSIONS

V. N. Maksimenko and S. A. Zorin UDC 539.375:629.7.02

The stress—strain state of an anisotropic plate containing an elliptic hole and thin, absolutely rigid,
curvilinear inclusions is studied. General integral representations of the solution of the problem are
constructed that satisfy automatically the boundary conditions on the elliptic-hole contour and at
infinity. The unknown density functions appearing in the potential representations of the solution
are determined from the boundary conditions at the rigid inclusion contours. The problem is reduced
to a system of singular integral equations which is solved by a numerical method. The effects of
the material anisotropy, the degree of ellipticity of the elliptic hole, and the geometry of the rigid
inclusions on the stress concentration in the plate are studied. The numerical results obtained are
compared with existing analytical solutions.

Key words: anisotropic plate, thin rigid inclusions, stress concentrations, stress intensity factor,
integral equation.

Let an infinite rectilinearly anisotropic plate of thickness i be weakened by an elliptic hole with the contour
Lo = {(z/a)® + (y/b)*> = 1} and a set of thin, absolutely rigid inclusions shaped like smooth open curves L,
(j = Il,_k) The curves do not intersect each other and the contour Lg. For each contour L;, we determine the
normal vector n(t) (t € L;) directed to the right when passing from the points a; to the points b; (Fig. 1). The
plate is loaded by external forces X, + 7Y, at the hole contour and the forces 03°, 0;°, and 77 at infinity. Each

inclusion can perform rigid-body translations and rotations:

k
wt(t) +ivE(t) = g1(t) +ig2(t) = G(t),  teL=|]L,

j=1 (1)

G(t) = ¢; + 1g4t, te L.
Here c; is a complex constant and ¢; is the unknown or specified rotation of the rigid inclusion L;. The plus and
minus signs refer to the left and right faces of the inclusion, respectively. It is assumed that a generalized plane

stress state occurs in the plate and the rotation vanishes at infinity.
The stresses in the plate can be expressed in terms of two analytical functions ®,(z,) (v = 1,2):

(0 Tansy) = 2Re (D (=1, D2, (21)) @)

v=1
(zv = x + ppy and p,, are the roots of the corresponding characteristic equation with positive imaginary parts [1]).
We write the functions ®,(z,) (v =1,2) as
2

(I)u(zu) = Z (I)ui(zu)- (3)

=1
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Fig. 1. Infinite anisotropic plate with an elliptic hole Lo and a
set of thin, absolutely rigid inclusions L; (j = 1,k ).

Here ®,1(z,) is the solution for an infinite anisotropic plate with an elliptic hole loaded by specified forces at the
hole contour and at infinity [1] and the functions ®,2(z,) determine the perturbed stress state due to the presence
of rigid inclusions.

Using the solution of the problem of an infinite anisotropic plate which is loaded by a point force at the
internal point 7 and is free of stresses at the elliptic-hole contour Ly and at infinity [1]:

1 A% I, A* n, A%

U, (20, 70) = ( = - Vl, - V2, );
( ) wi (G NG = G =Gm)  G(1—Gui)
a—iuyb a+iuyb
ZVZWV(CV): Cl/+ 1/1; |<1/|>1a

2 2
Zy + /22 — (a® + p2b?)
G =0C(2) = @ — b ) Cu(00) = o0,
., 2 2 2b2
UVZCV(TV):T TV .(a Th ), 7o =Rer+ p,Imr,
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(the coefficients A% depend on the magnitude and direction of the point force [1]) and using the superposition
principle [2], we seek the functions ®,5(2,) in the form

)= 1 Ay(r) LA nmAS(T) .

(I)V2( V) B w,’,(cy) L/ (Cv — Ny Cl/(l - Cl/ﬁl) Cl/(l - Cl/ﬁQ)) a

B 1 Q,(7) o 1, (1) - 1, Qa(T) -
e | G ™ ot e T S ) @

L

O (1) = —2mi AL (1) /My (7), M, (1) = py cos (1) — sinh(7).

Here Q, (1) = {Quj(7): 7 € L;, j = 1,k } are unknown complex functions on the contours L;, ¥ = ¢(7) = {¢;(7):
TELj j= 1,k} is the angle between the normal vector 7 to the left face of the rigid inclusion L; and the z axis,
and d1, = M, (7)ds (ds is an element of the arc L).

The functions ®,2(z,) constructed in this manner automatically satisfy the conditions X,, = Y, = 0 at
the hole contour Ly and vanish at infinity. Consequently, the functions ®,(z,) written in the form of (3) ensure
satisfaction of the boundary conditions at the hole contour Ly and infinity.
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Differentiating expression (1) with respect to the arc length, we obtain the boundary condition [3]

At)®E (1) + B(t)PE (1) + F(t2) = WE(t), tel, (5)
where
P2dga(t)/ds — @2 dgi(t)/ds M (1) M, (¢)
W) = ;A = ,  Bl)=B )
e A REYAD) =435 PO=5mm
A — ZE2Q1 —p1tz2’ Bo — ?2@1 —ﬁchz’
P2G2 — P29g2 P2G2 — p2g2
Py = Quipy — Q16 +a12, Q= Q12 + asopy, ' — asg,

®*(t,) are the boundary values of the functions ®,(z,) on the contour L and a;; are the strain coefficients of the
anisotropic plate material [1].

Substituting the limit values of the functions ®,(z,) from (3) and (4) into the boundary conditions at the
rigid inclusions L; (5) and performing some manipulations, we obtain

() o B |
L/m G dri +L/[K11(t,T)Q1(T) + Ki2(t, 7) (1) | ds = f*(1), telL _JQ Lj. (6)

Here

_WE(nl)_wi(Cl)dm—ydln 772—52) AW ({LIAC(;) dTQ_lliéndﬁ)
— G2 —Gm
n1B(r) B(t) g — L na A(7) d I> dr
WA~ Gip) w/2(42)§2( 1)]7

Kio(t,7)ds = w1 (61) [ Alr) - A(Q 7 M(M dij

7 Y, =
_ w2(772) w2(§2) dﬁg + dln >

wy(C2) (72 — C2) 2 — 2) WG

(t) L ~ mA(T) -
)1 (1 —Gm i 1 — Q72 a 2)

() = %((S) {Wa(t) = 2[A(t) @11 (t1) + B(t) P11(t1) + Pa1(t2) ]},

Wa(t) = WT(t) + W (¢).

According to the assumptions of the smoothness of L; (j = 1,k), the functions Ki1(¢,7), Ki2(t,7), and
f*(t) are continuous.
The singular integral equation (6) should be supplemented by the equations

/ U(r)dn =0 (=T, (7)

Ly

1

which require that the principal vector of all forces acting on each rigid inclusion vanish.
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Fig. 2. Infinite anisotropic plate with an elliptic hole Lo and two sym-
metric thin rigid inclusions under uniaxial tension.

To determine the unknown rotations ¢; (j = 1, k), one should solve system (6), (7) subject to the conditions
that the principal moment of the forces acting on each rigid inclusion vanishes. These conditions are given by [3]

9 Re (/(T1 — Ao — 780 (1) dn) -0 (j=TFk). (8)

L;

Using the singular integral equation (6) subject to conditions (7) and (8), one obtains the solution of
the above-formulated problem of an anisotropic plate with an elliptic hole and thin, absolutely rigid curvilinear
inclusions.

We seek a solution of the integral equation (6) in the form

() =X OA-)72 rel;={r="(): ¢ <1}, 9)
where x7(£) are bounded Hdlder-continuous functions on the segment [—1,1]. According to the assumptions of
smooth curves Lj, the solution of Eq. (6) subject to the supplementary constraints (7) and (8) in the class of
functions (9) exists and is unique [4]. With the use of the Gauss-Chebyshev quadrature formulas [5], the singular
integral equations (6) with the supplementary conditions (7) and (8) is reduced to a system of linear algebraic
equations for approximate values of the desired functions x7(£) at the Chebyshev nodes:

& = cos(

2i—1 7r)
2N,
(N; is the number of the Chebyshev nodes at the contour L;). Theoretical estimates of the convergence of this
numerical method are given in [6].

After the system of linear algebraic equations is solved and the functions y7(£) are determined, one can
calculate the values of the potentials ®,(z,) and stresses by formula (2) and evaluate the mode I and II stress
intensity factors (SIFs) at the tip of the rigid inclusion Lj;:

Ki(c) = %eréon 27, Ks(c) = %EI};T" 27r. (10)

Here t is the point lying on the continuation of the rigid inclusion along the tangent at the tip ¢; r = |t — ¢|.
Below, calculation results are given for an anisotropic (orthotropic) plate with an elliptic hole and two
symmetric thin rigid inclusions (Fig. 2). For ¢ = 0 (¢ is the angle between the principal anisotropic direction Ej
and the x axis), the anisotropic material parameters are as follows: E; = 53.84 GPa, E1/FE> = 3, G12 = 8.63 GPa,
and v; = 0.25. The plate is subjected to a uniform tensile load ¢° = o along the z axis. Figures 3 and 4
show the normalized stress concentration factor K* [K* = ,(0,b)/0%(0,b), where ¢,(0,b) and ¢2(0,b) are the
stresses o, at the point (0,b) of the elliptic hole in the presence and absence of rigid inclusions, respectively] versus
the normalized lengths of the ligament d/b and the inclusion p/b for various values of the ellipticity parameter
of the elliptic hole A\ = a/b for an orthotropic plate (E;/E2; = 3) and ¢ = 0. For A = 0.001, the elliptic hole
degenerates into a rectilinear cut. In this case, the calculation results agree with those given in [2] for the problem
of an anisotropic plate with cuts reinforced by thin elastic ribs [for the normalized stiffness parameter of the ribs
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Fig. 3. Factor K™ versus normalized ligament length d/b for an orthotropic plate: solid curves refer to p/b = 2
and dashed curves refer to p/b = 0.5; curves 1 refer to A = 0.001, curves 2 to A = 1, and curves 3 to A = 1000.

Fig. 4. Factor K* versus normalized length of rigid inclusions p/b: solid curves refer to d/b = 0.2 and dashed
curves refer to d/b = 0.4; curves 1 refer to A = 0.001, curve 2 to A = 1, and curve 3 to A = 1000.
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Fig. 5. Infinite anisotropic plate with an arbitrarily ori-
ented crack emanating from the tip of a rigid linear in-
clusion located along the x axis under uniaxial tension.

u® = E1bh/(E°F°) = 0, where E° and F° are the Young modulus and cross-sectional area of the rib, respectively].
One can see from Figs. 3 and 4 that the lengths of the rigid inclusion and hole-inclusion ligament have a pronounced
effect on the stress concentration in the plate.

We consider the problem of determining the stress—strain state of an infinite anisotropic plate with an
arbitrarily oriented crack (A = 0): Lo = {7(8) = —A 4+ b(1 — ) e™: —1 < 3 < 1} and a rigid rectilinear inclusion:
Ly ={7(¢) = p(1 +&): —1 < £ < 1}. The plate is loaded at infinity by a tensile forces o directed at an angle v to
the z axis (Fig. 5). The calculations were performed for A/b=0.01, v = 7/4, o = w, and &1 = 0 (A is the length of
the ligament between the ends of the rigid inclusion and the crack and e is the rigid-body rotation of the inclusion).
The plate material is nearly isotropic (E1/Es = 1, p; = 1.004¢, and s = 0.9964). As in the case of a rigid inclusion,
the mode I and II stress intensity factors at the crack tip ¢ (8 = —1) are calculated by formula (10). The calculated
SIFs K1 2/(o/p) at the crack tip ¢ are listed in Table 1 for p/b = 10, 102, and 10* and N = 50 and 100 (N is
the number of the Chebyshev nodes at the rigid-inclusion contour). The numerical data obtained are compared
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TABLE 1

b K1/(0\/75) K2/ (0\/7)
Z N1 =50 N1 =100 Data of [7] | N1 =50 | Ny =100 | Data of [7]
10 0.13287 0.13286 0.13285 0.20356 0.20352 0.20322
102 | 0.01592 0.01585 0.01584 | 0.11657 | 0.11657 | 0.11611
103 | —0.02047 —0.02170 —0.02187 0.08807 0.09032 0.09007

Ky o/(oVrb)
1.6
0.8
0
-0.8
0 6 12 18 a/m

Fig. 6. Stress intensity factors K1/(cv/7b) and Ka/(cv/7b) at the
tip of an arbitrarily oriented crack near a rigid inclusion in an or-
thotropic plate versus the angle « for uniaxial tension: curves 1 refer
to p/b = 10, curves 2 to p/b =5, and curves 3 to p/b = 1; dashed
curves refer to p/b = 0.1.

with the exact values of K1 2/(0/7p) at the tip of a crack emanating from the end of a rigid inclusion (A =0 and
a =) [7]. It follows from Table 1 that for p/b = 10, the error in determining the SIFs by the numerical method
is a fraction of a percent of the exact solution. For p/b = 103, the error is smaller than 1% even for N = 100.
The comparison results indicate that the numerical method proposed can be effectively used to solve different-scale
problems of fracture mechanics of flat structural members.

Figure 6 shows the stress intensity factors K, /(ov/7b) and Ko/(ov/7b) at the tip ¢ of an arbitrarily oriented
crack with contour Ly = {7(8) = —A + b(1 — B)(cosa + isina): —1 < B < 1} located near a rigid inclusion
L1 ={7(€) = p(1 4+ &): —1 < & < 1} versus the angle of inclination a. Calculations were performed for A/b = 0.01
and 1 = 0. The plate material is orthotropic (E1/Fs = 3); ¢ = « (see Fig. 5). At infinity, the plate is loaded by
forces 02° = o (y = 0). One can see from Fig. 6 that the values of K;2/(0v/7b) at the crack tip increase with the
rigid-inclusion length. The reason is that for small values of b/p, the crack is in a strongly perturbed stress field
that occurs near the rigid inclusion.

It follows from the results presented that the anisotropy parameters of the plate material, the degree of
ellipticity of the elliptic hole, the geometry of rigid inclusions have a considerable effect on the stress concentration
in the plate. The numerical data given in Table 1 show that the integral-equation method is very effective and
can be used to solve different-scale problems of determining the stress—strain state and estimate the strength of
anisotropic plates with an elliptic hole (crack) and thin rigid inclusions.
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